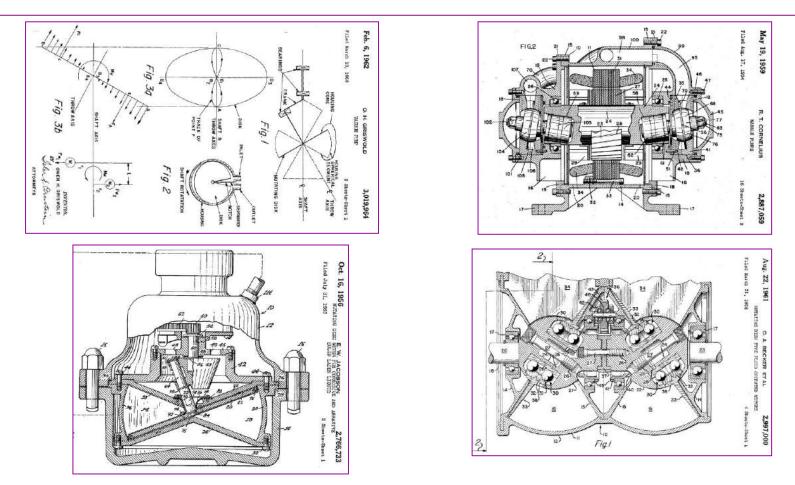
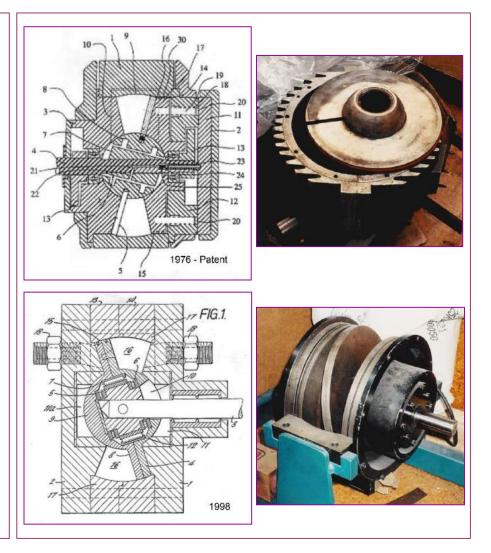


Wobble / Nutating Plate Pumps Project(s) review


By Lindsay Dalziel, Design Director of

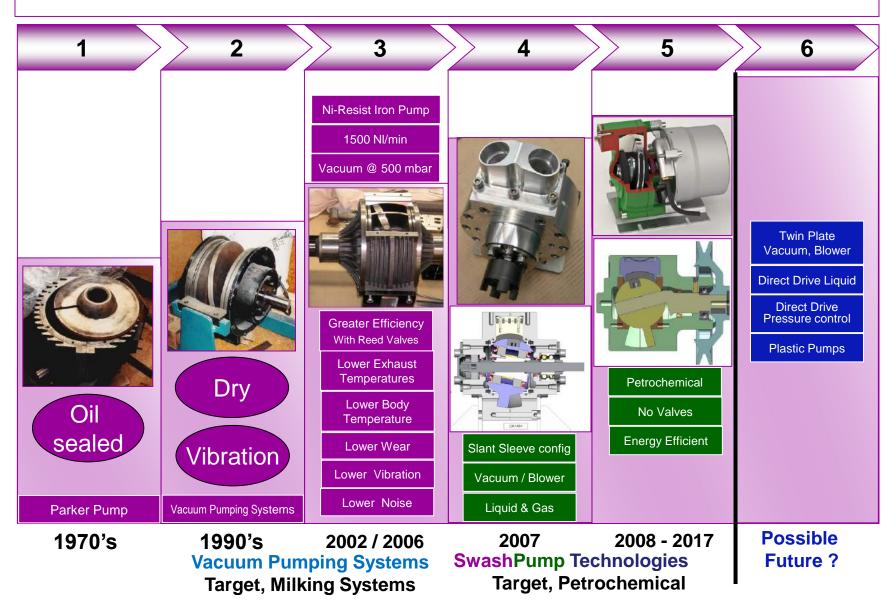
Innovative Mechanical Engineering

www.DesignSMART.co.nz


History of Wobble Plate Pumps

All these above designed without modern CAD/CAM & Simulation tools, however from what we know now this would have limited their progress, IP drawings shown above are from the 1950's & 1960's. They all utilizes the slant axis principle which has been around since 1896, (the oldest IP that we discovered).

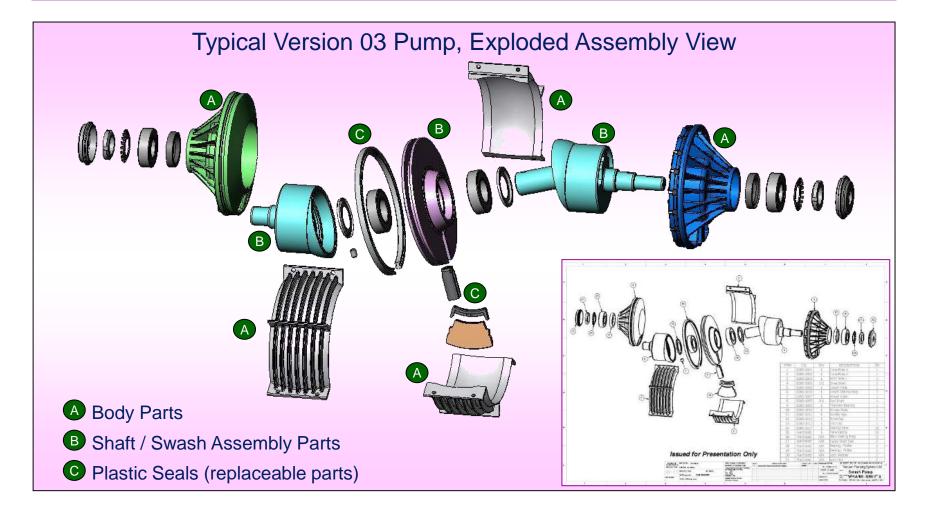
Wobble Plate Pumps, the NZ History


- Was firstly know in NZ as the Parker Pump, named after Alf Parker, an ex British World War II Royal Air force engineer who immigrated to NZ.
- This slant axis mechanism was adapted by Parker into a Vacuum Pump in New Zealand in the 1970's (without CAD CAM).
- He lodged his first Patent in 1976, his last in 1998 just prior to his death.
- Parker ran his pump(s) oil lubricated (as a sealing agent) rather than as a dry running vacuum pump.
- Vacuum Pumping Systems, partnered with him in 1995 & converted it into a non lubricated dry running Vacuum Pump & continued the development.
- SwashPump Technologies then took the IP & made significant inventive step to the IP between 2007 & 2017.

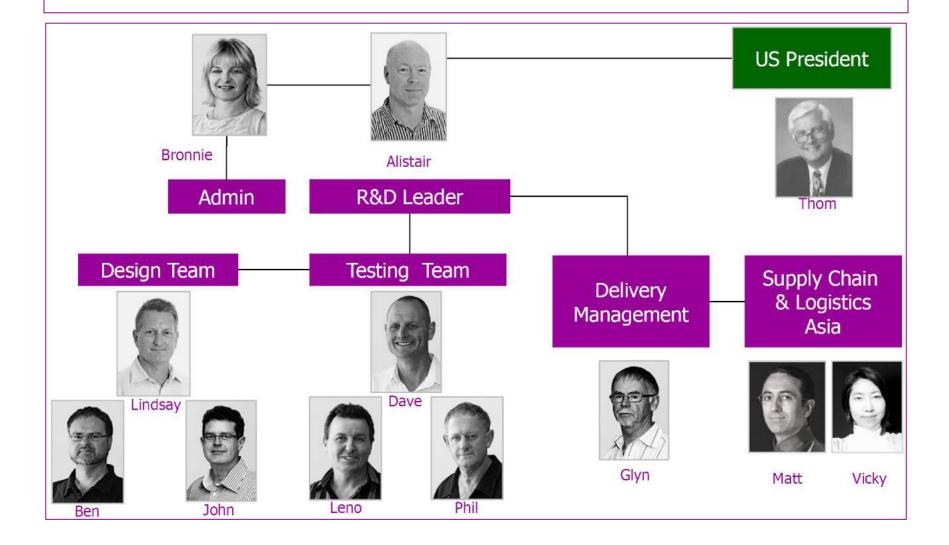
Resources used during recent NZ development

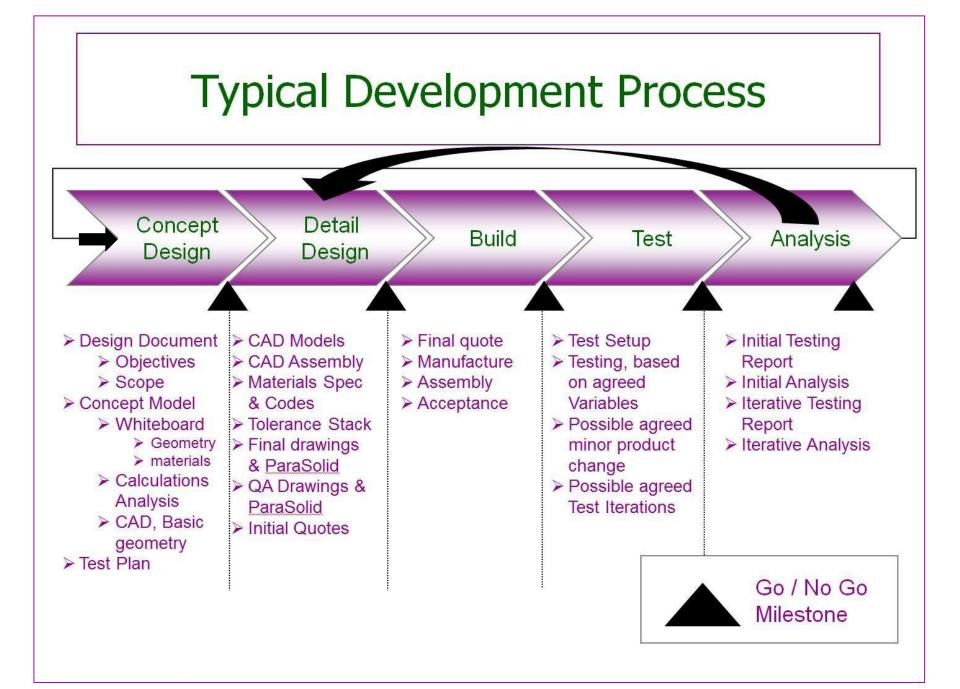
- SolidWorks 2002 through to SolidWorks 2016.
- SolidWorks Simulation (FEA) in all of the above.
- SolidWorks PDMWE, 3 full users & 3 contributors, (2007 to 2012).
- SolidWorks Motion / Mechanism design, re dynamic balance. Also Industrial Research support in the early development.
- CFD support from Paul @ Matrix Applied Computing in 2008, using STAR-CCM+ from CD-adapco.
- NC manufacturing & tool making by RPM and Axiam Engineering.
- Injection (over) moulding by Galantai & Absolute Plastics.
- CMM QA support from Brendan @ Axiam Engineering, who are also SolidWorks users.

Wobble Plate Pumps (NZ) History continued

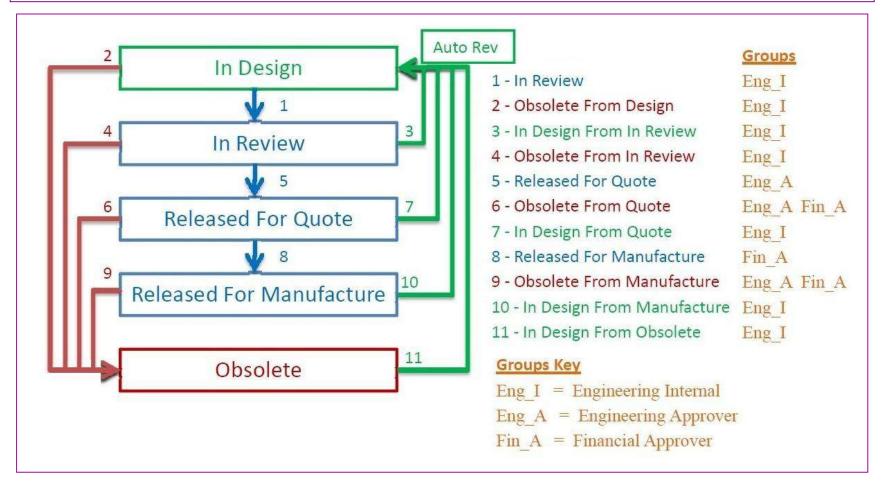

Vacuum Pumping Systems, Version 03 Pump

500 mbar 1500 Nl/min Vacuum Pump Target market was milking systems (2004)

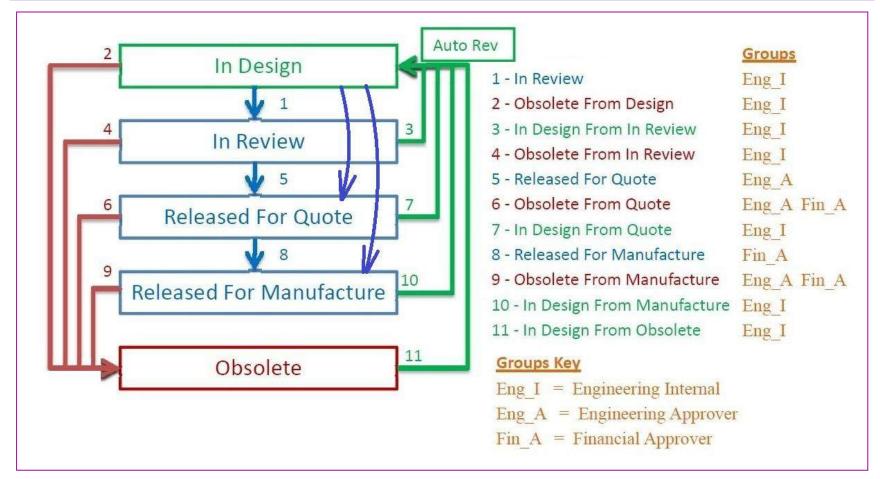




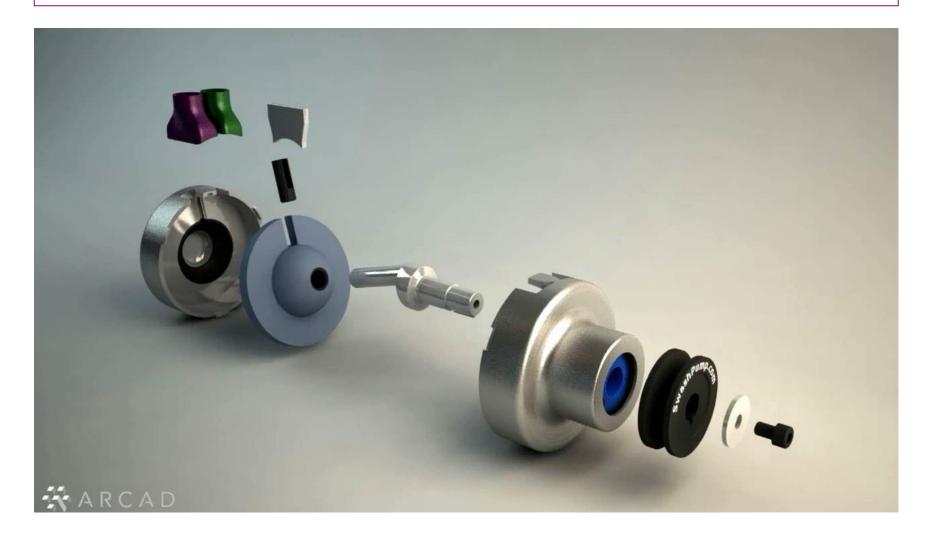
The Version 03 (Vacuum) Pump Design



The SwashPump Team (2009)

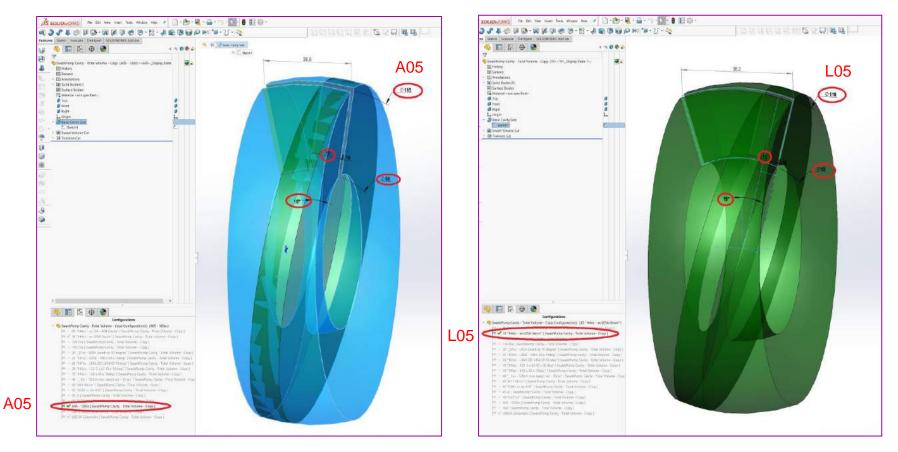


The SwashPump PDMWE workflow


Note revision control of part configurations was done via revision management of drawings (only) each drawing created from specific part configurations.

Improved SwashPump PDMWE workflow

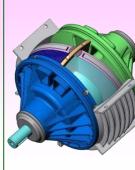
Note revision control of part configurations was done via revision management of drawings (only) each drawing created from specific part configurations.

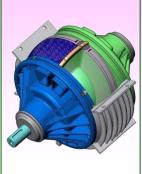

SwashPump Version 05 Liquid Pump Assembly

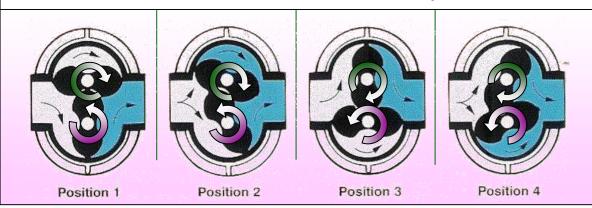

SwashPump Version 05 Liquid Pump Motion

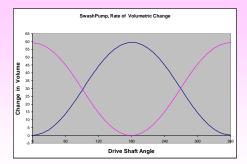
The Swept Volume / Important Dimensions

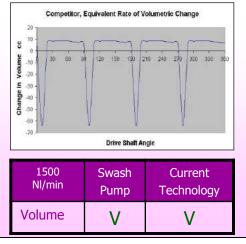
- 1) Outer Swash Diameter
- 2) Inner Swash Diameter (Hub Diameter)
- 3) The Cone Angle (Angle of Nutation)
- 4) Swash Thickness (subtracted volume)




Vacuum Application Swash v Roots

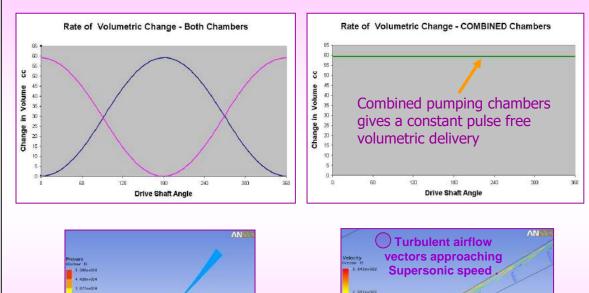





Cant Valve Roots Blower, suffers reflux positions 2 & 4

SwashPump Flow

Roots Pump Flow



1 Gitterdül

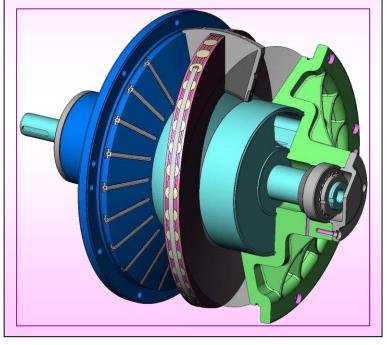
Flow & Leakage

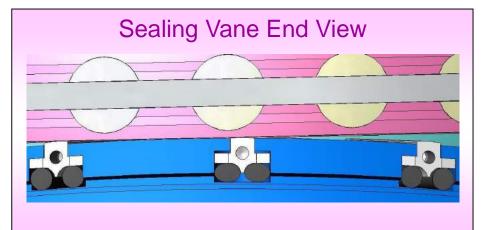
Low Leakage Low Thermals

The Smooth Shock free sinusoidal compression from both Swash pumping chambers combine as shown

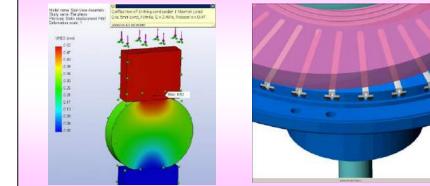
The combined smooth shock free compression of the SwashPump gives a constant flow beyond the valves

CFD modelling of the Swash to Cone air leakage velocity shown, lower right hand image.


VolumeVVThermalsT1.4 T	1500 Nl/min	Swash Pump	Roots Pump
Thermals T 1.4 T	Volume	V	V
	Thermals	Т	1.4 T



Mechanical Seals Sealing Vanes



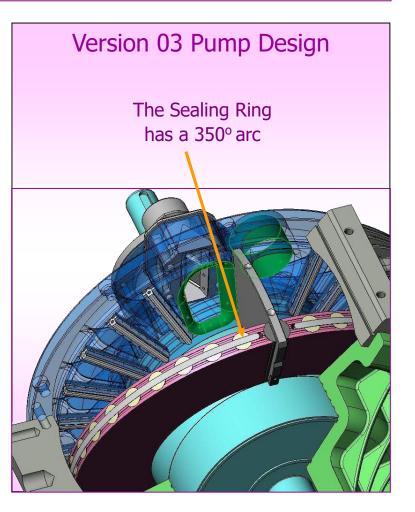
- The Sealing Vanes were introduced to ascertain what performance improvement would be achieved.
- Cost / benefit was marginal.

For AVI Video, Double Click Bottom right Image

The Swash Sealing Ring

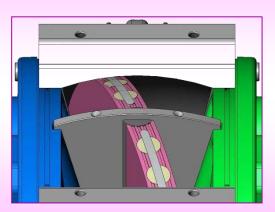
An Important Mechanical Seal for pumping air / gas

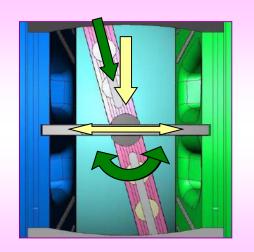
Sealing Ring



X-Sec & video, double click picture

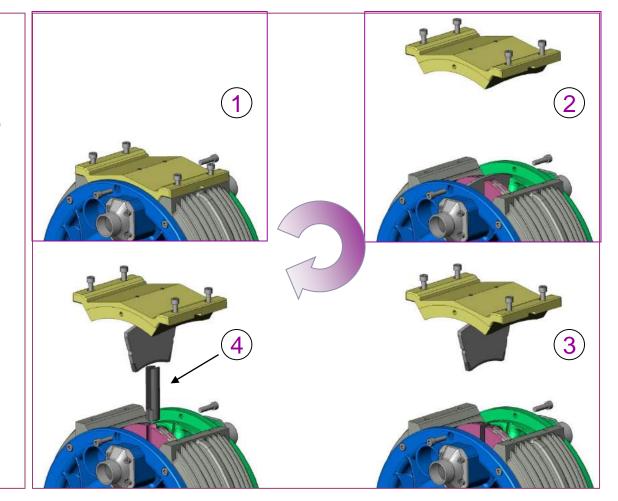
Mechanical


Seals


The Trunnion Bearing

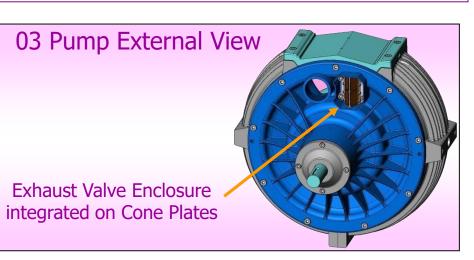
Friction surfaces	Load type	Distance / cycle	Average Velocity
Trunnion to Divider	Perpendicular	180mm	Average 3.5m/sec
Swash to Trunnion	Radial	12mm	0.23m/sec

Trunnion Forces


The Trunnion acts as both a Seal & Bearing as illustrated

Trunnion Serviceability

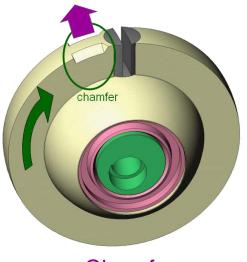
- 1. Loosen 6 Fasteners
- 2. Remove Divider Retainer (Body Top)
- 3. Remove Divider & its attached Seal
- 4. Remove Trunnion from Swash Plate
- 5. Replace Trunnion with new item if required, Reverse Steps 1 to 4.


Exhaust Reed Valves

Required for higher than **300mbar Vacuum** applications

Carbon fibre Reed valves

Mechanical


Seals

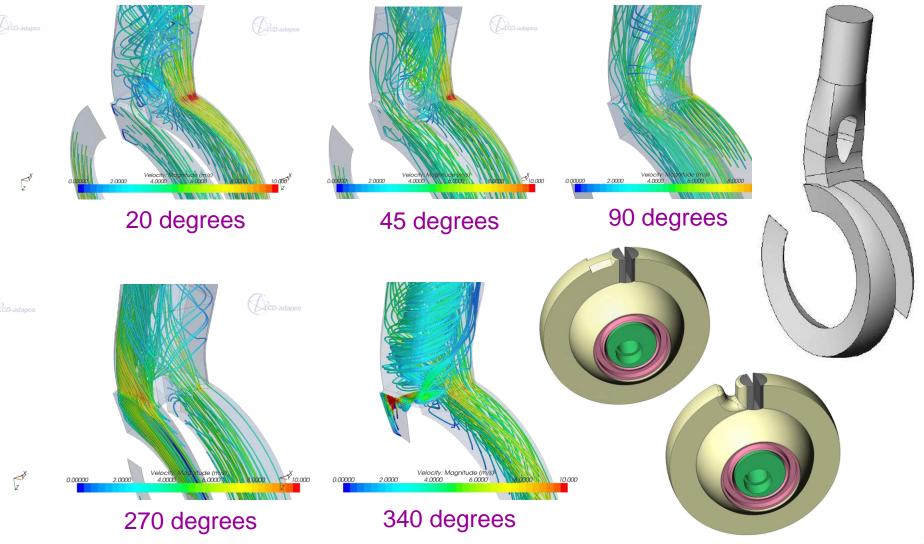
Reed valve in action

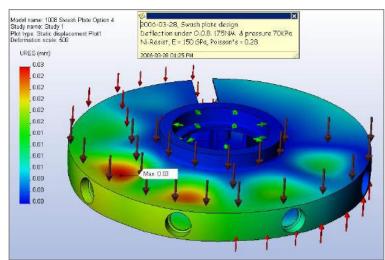


L04 Liquid Pump, Exhaust Analysis

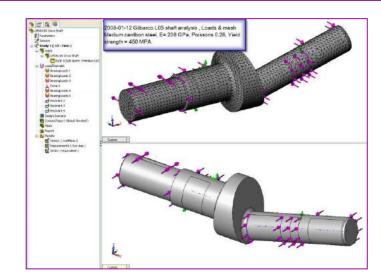

- Swash Plate Liquid Pump geometry options analyzed in exhaust region.
 - Reduced peak fluid velocity
 - Reduced fluid kinetic energy
 - Reduced max static pressures

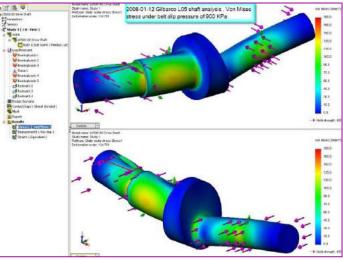
Chamfer

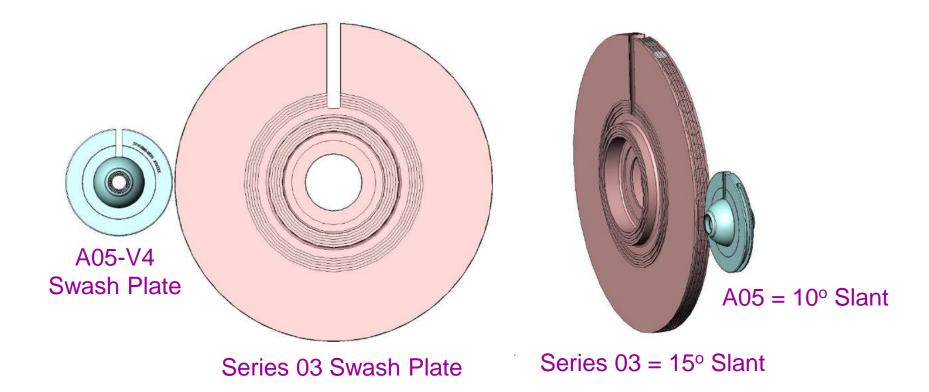

Scallop


Trench

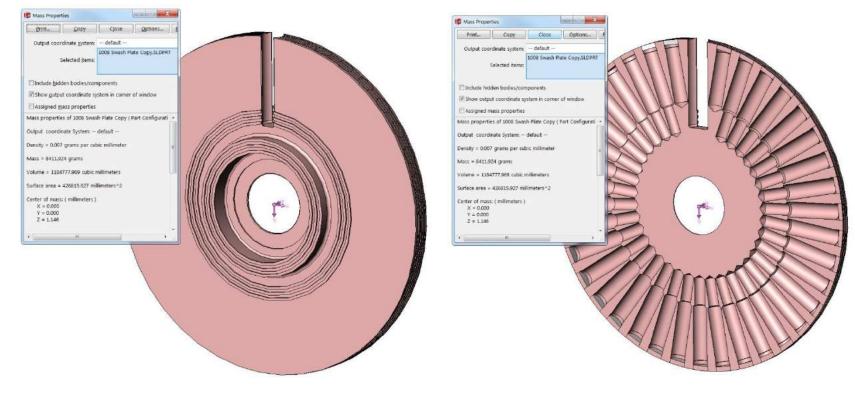
 Green arrow = direction of fluid during compression cycle
Purple arrow = direction of fluid discharge through port


L04 Liquid Pump, CFD Exhaust Analysis


SolidWorks Simulation, where required



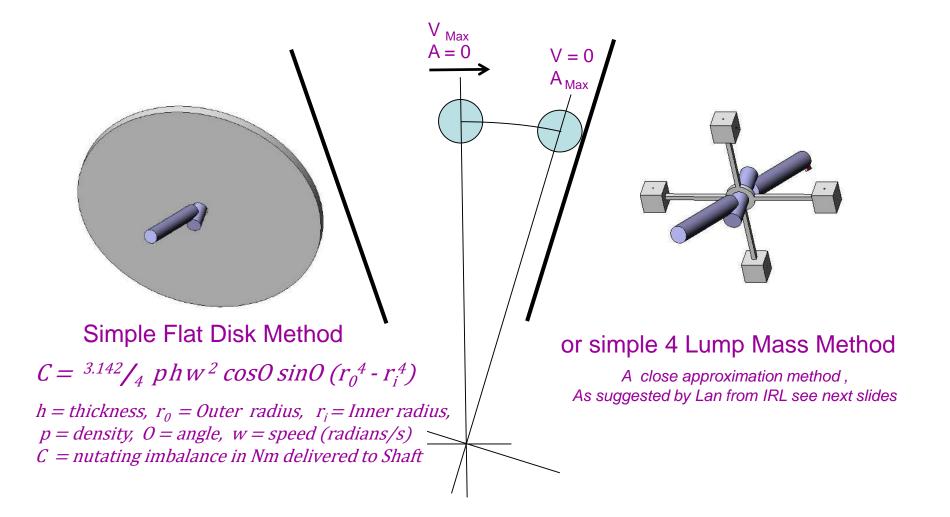
Model name. Sealing ing Study name: Study 2 Pict type: State displaceme odol tramo: Sealing ring udy name: Study 2 of type: Static nadal at white an an and and a state of a second second lives e Alma stress order Installed conditions - valuably boxpressed by 0.2 here all around Development inspiratory (DNI separationg loce Longe displacement non-insure analysis) Defromed Relate Movies at 1-1 Ring (OCI-340, Nove 5 Wr30 × 16 Augh Rock, E = 7 GRG, Respond's = 0.59 rge displacement non livear analysis Reng CID-240, Xaeo & Wilde × 15 high Renk, E + 7 6Po, Palazen's + 6.39 mation usale. URES (mm) 12.45 2005-04-14 08-39 AM 2005-04-14 08:47 MM 11,45 10.41 9.37 2.22 7.28 6.34 5.20 4.16 3.12 2.00 1.04 11.4 E 王 Nov 1249



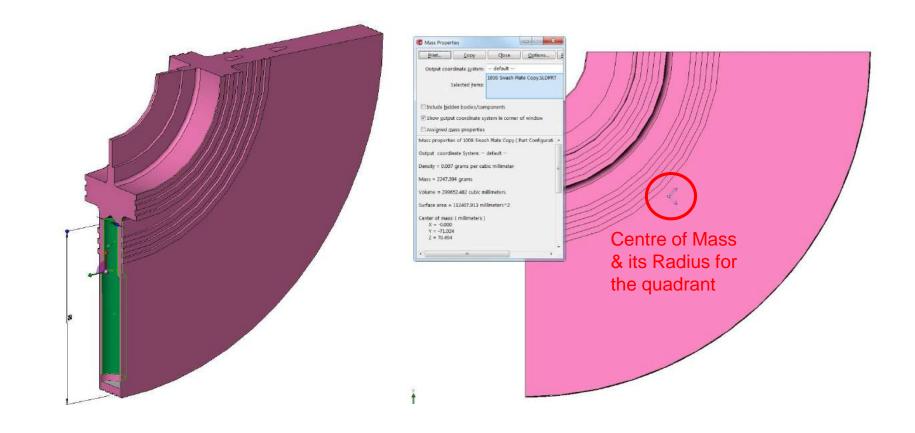
Dynamic balance of a Nutating (Wobble) Plate

Size does matter! & Slant (travel) angle

Dynamic balance of a Nutating Plate



Series 03 Swash Plate


Weight / Mass Reduction

So obviously Mass / Weight matters!

Dynamic imbalance calculation methods

Dynamic balance of Large 03 Plate

Dynamic balance of Large 03 Plate

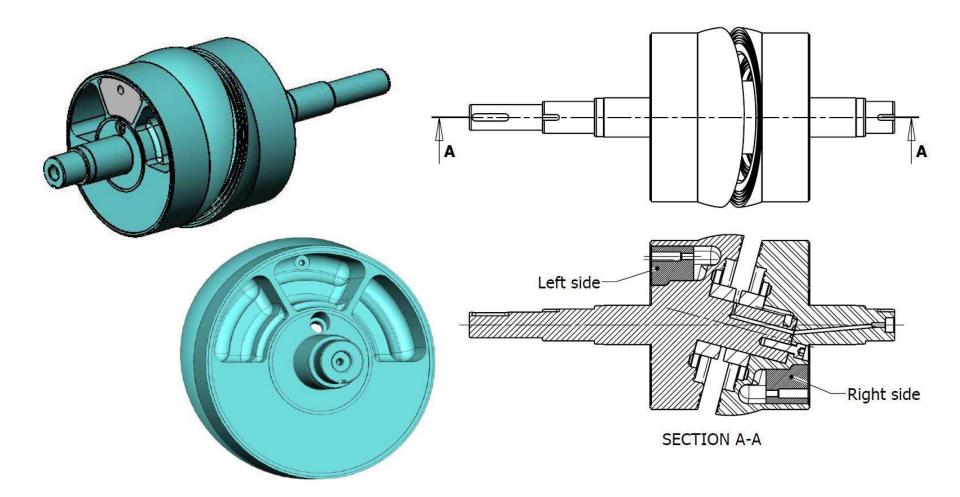
> 4 Lump Mass (Close Approximation) Method

 $\frac{1}{4}$ Mass of Swash = 2.13 kg

effective radius r = 0.10 m

Distance $d = r x \sin 15^{\circ} = 0.0259 m$

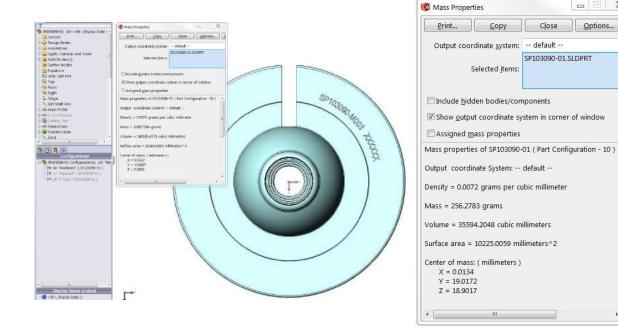
Speed (1500rpm) w = 157 rad/s

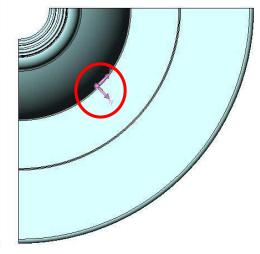

Acceleration = d w² = $0.0259 \times 157^2 = 638 \text{ m/s}^2$

 $F = ma = 2.13 \times 638 = 1358.9 N$

Nutating Imbalance Couple = $2 r F = 2 \times 0.1 \times 1358.9 = 272Nm$

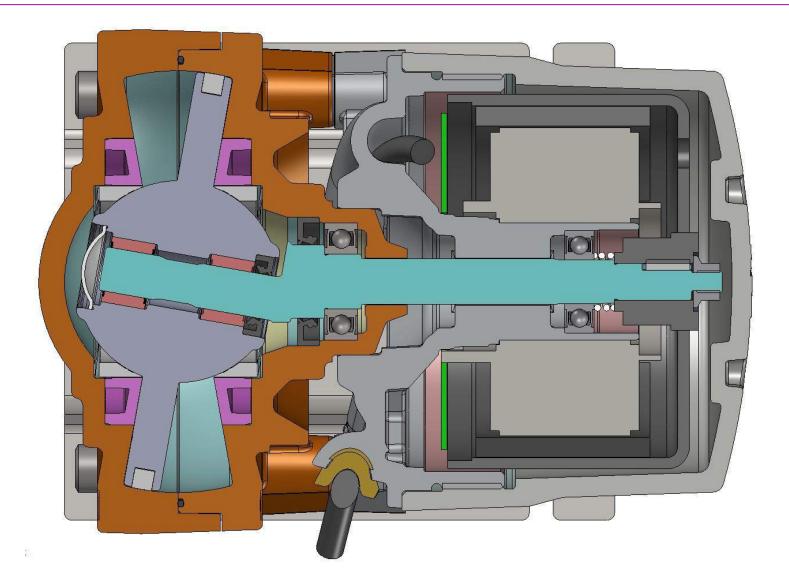
This was a significant imbalance for the total mass of 03 pump so we compensated for this within the pump.


Dynamic balance rectification of large 03 Pump

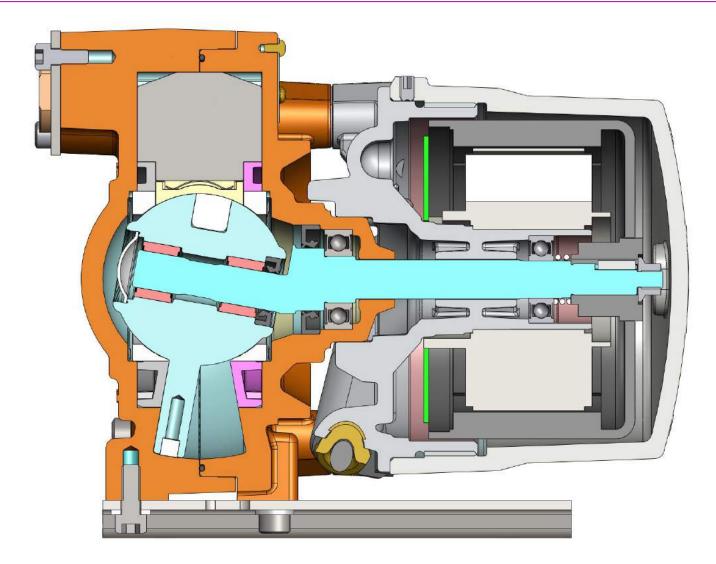

Dynamic balance of the small A05-V4 Plate

Options...

SS



Dynamic balance of A05-V4 Plate

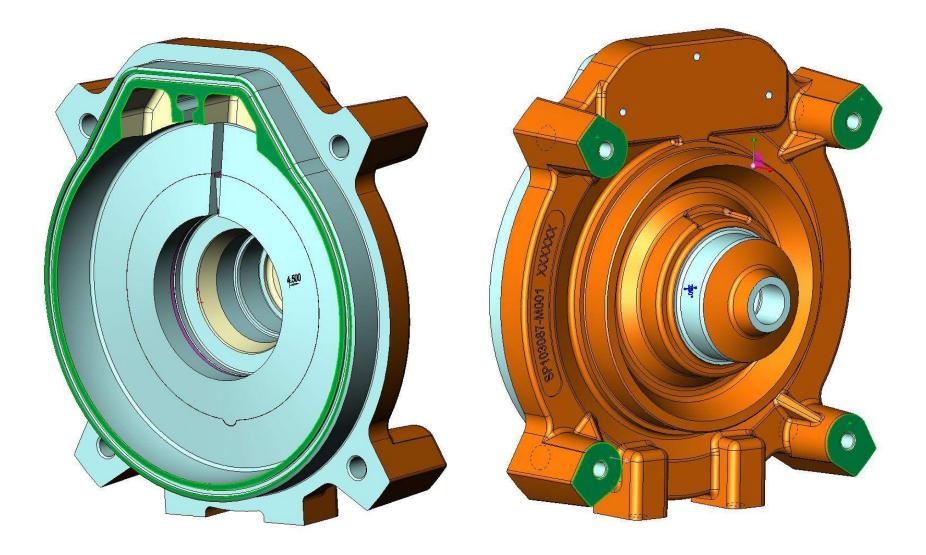

4 Lump Mass (Close Approximation) Method $\frac{1}{4}$ Mass of Swash = 0.256 kg effective radius r = 0.027 m Distance $d = r x \sin 10^{\circ} = 0.0047 m$ Speed (1500rpm) w = 157 rad/sAcceleration = d w^2 = 0.0047 x 157² = 116 m/s² $F = ma = 0.256 \times 116 = 29.7 N$ Nutating Imbalance Couple = $2 r F = 2 \times 0.027 \times 29.7$ = **1.6Nm**

This is not a significant imbalance for the total mass of A05 pump.

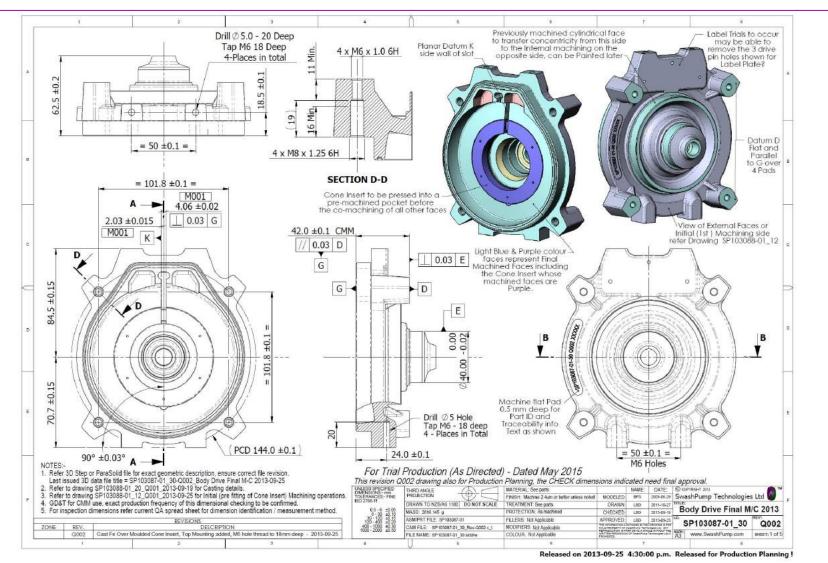
A05-V4 SwashPump Horizontal X-Section

A05-V4 SwashPump Vertical X-Section

A05-V4 SwashPump Petrol Vapour Recovery

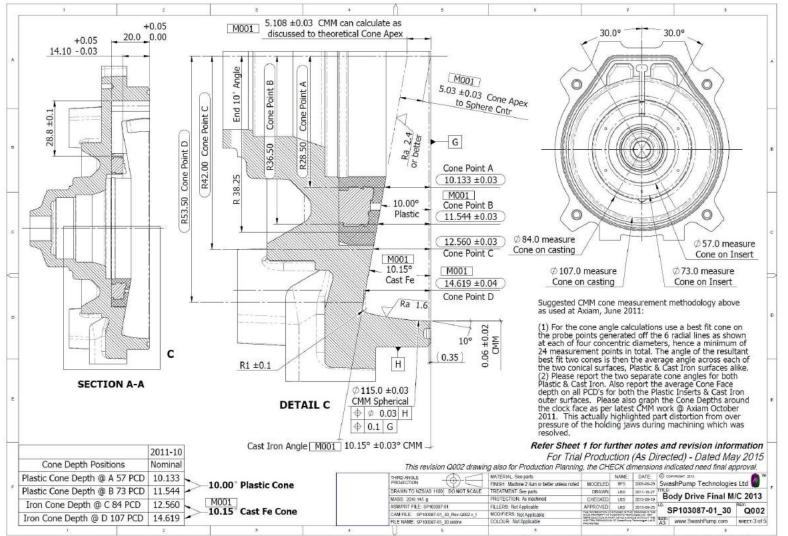


California has been using active Vapour recovery since the 1970's

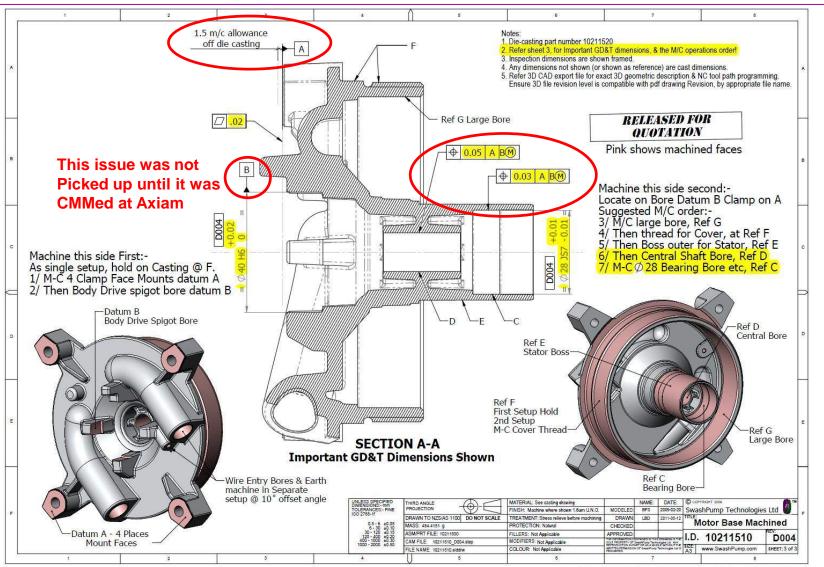

A Rubber boot around the nozzle helps capture the expelled fumes


QA - Body Drive Motor Mount, Parallel faces

Drawings & QA



Drawings & QA


Released on 2013-09-25 4:30:00 p.m. Released for Production Planning !

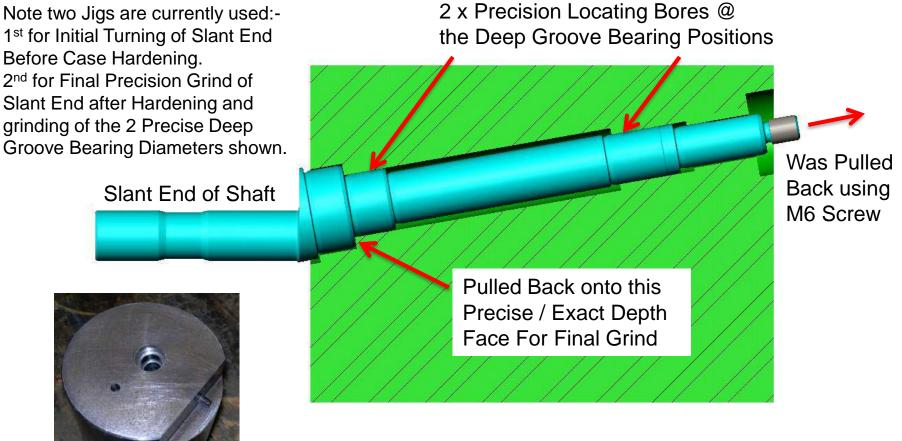
Drawings & QA

Released on 2013-09-25 4:30:00 p.m. Released for Production Planning !

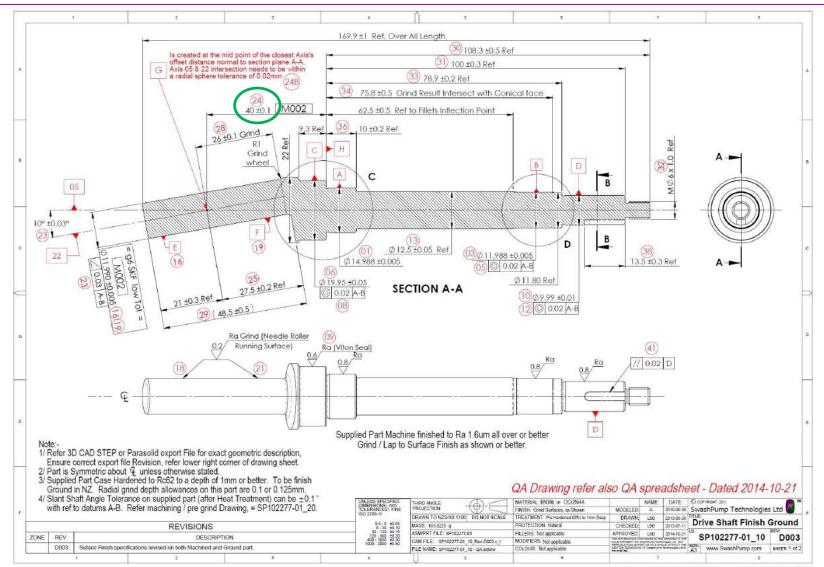
WDT Motor Base Bearing Concentricity Problem

Released on 2011-05-25 2:30:53 p.m. Released for QUOTATION

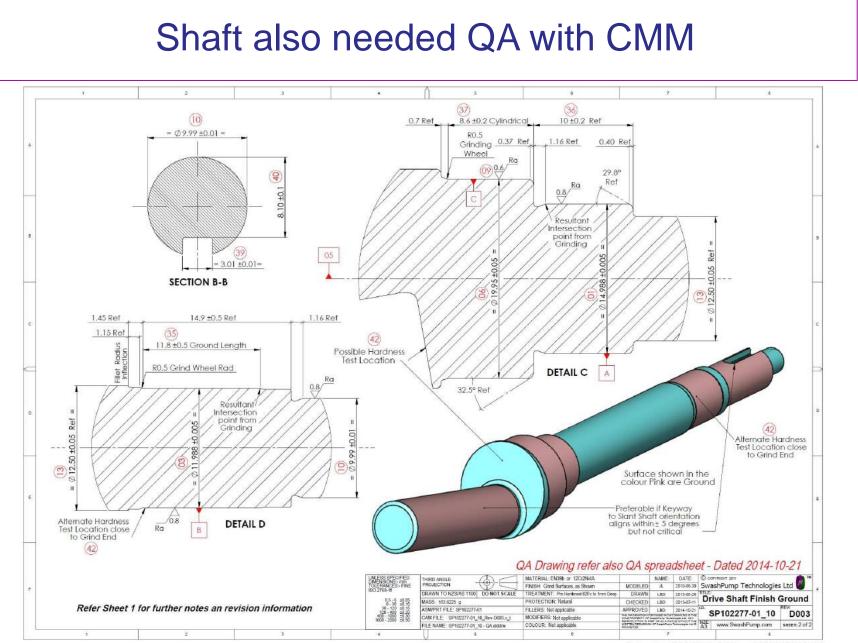
CMM of WDT Motor Base Bearing


Drive Side Body / Motor Alignment check

We made an Alignment verification Jig at Axiam, so we could double check without CMM


The Manual Drive Shaft Jig(s) in Cross Section

Full Production manufacture would be on an NC grinder with hydraulic self centring collets



SECTION A-A

Shaft also needed QA with CMM

Released on 2014-10-21 1:10 p.m. FOR QA PURPOSES

Detailed Measurement CMM Report, Body Drive

Name: Date:

Batch:

ACCEPTED / REJECTED / CONCESSED (delete as applicable)

					DATA								-		1	1		-	-							-	1					1	-			-	-	-		
		Predicated Std						_	serial	serial	serial	serial	secial	serial	sorial	serial																								
		LSL	MD	USL	L	UL	Cpk	Cp	Mean	Dev	Min	Max	1	2	3	4	5	6	7	8	9	10	11	12	13	16	15	16	17	18	19	20	21	22	23	24	25	26	27	28
1	Total body length	82,300	62,500	62 700	62.423	62,591	2,000	2.388	62,507	0.028	82,458	62,535	62,471	62,458	62.464	82,485	62,509	62.516	62,468	62.479	62.472	62.514	62.521	82.525	62,527	62.528	62,530	62.528	62.531	62.528	62.529	82.529	62.535	62.524	82.632	82.531	62.531	62.534	82.626	62.52
2	Mő Thread length	10 000	11:000	12.000		#DR//01	PDNIO	4DN00	#DMIDE	#DN:01	0.600	0.000																												
3	MB Thread length	16.090	16 500	17 000	+EDIV/01	#ERV/DI	PDMID	#01/00	#ERVIO	#010/01	0000	0.000																												
4	MS thread to 6H																																							
5	Divider slot side to centre	2.015	2.025	2.035	+EXIVIDI	400/01	#DIVIO	4EIN001	#D0/01	#01/301	0.000	0.000	1															-												
.8	Divder slot width	4.030	4.050	4.070	4.029	4.076	0.735	0.956	4.053	0.008	4.030	4.064	4.057	4.047	4.016	4.065	4.055	4.062	4.030	4.062	4.055	4,054	4.061	4,064	4.060	4.063	4,059	4.060	4.047	4.043	4.047	4.047	4.054	4.057	4.052	4.054	4,064	4.054	4.063	4.04
1	Divider slot perp to G			0.020		0.017		0.822	0.005	0.004	0.000	0.015	0.002	0.003	0.001	0.005	0.003	0.010	0.000	0.001	0.008	0.009	0.003	0.001	0.012	0,003	0.006	0.003	0.008	0.002	0.002	0.015	0.005	0.000	0.003	0.005	0.001	0.005	0.000	0.01
8	Divder slot depth to G	20 000	20 025	20.050	19.972	20.057	0 341	0.685	20.015	0.014	19.985	20.032	19.985	19.901	10.002	10.985	20.009	20.014	10.008	20.021	20.014	20.032	20.023	20.023	20.023	20.018	20.018	20.022	20 030	20 026	20.025	20.025	20 022	20 023	20.012	20.019	20.024	20.031	20.025	20.0
9	Divider stot height	66.300	66.400	66.600	86 278	68.427	0.707	1.348	66.352	0.025	68.302	65:385	66.302	66.307	68.317	88.356	68.334	66.306	66.360	68.336	66.360	66,358	66.362	66.367	66,359	66.385	66.385	66.371	66.370	66.365	66.363	66.377	66.361	66.366	86.384	88.385	68.374	68.375	66.357	66.3
10	G to D distance	41.900	42.000	42.100	41.878	42.053	0.751	5.145	41.900	0.029	41.911	42.002	41.921	41 911	41.935	41.929	41.972	41.971	41.831	41.929	41.925	41.970	41.984	41.980	41.982	41.985	42.002	41 002	41.994	41 992	41.982	41.988	41.988	41.979	41.990	41.990	41.991	41.995	41.991	41.9
11	G to D partallel			0.090		0.519		0.201	0.045	0.025	0.000	0.078	0.600	0.000	0.000	0.047	0.037	0.000	0.042	0.065	0.071	0.041	0.075	0.058	0.052	0.085	0.070	0.039	0.049	0.065	0.034	0.063	0.041	0.078	0.018	0.053	0.063	0.010	0.065	0.0
12	Motor spigot dia E	39.960	39.990	40.000	39.979	40.004	0.691	0.907	39.991	0.004	39.980	39.999	39.990	39.992	39.990	39.990	39,997	38.997	39.991	39.998	39.995	39.990	39.990	39.990	39.990	39.995	39,966	39.967	39.987	39.990	39.991	39.992	39.997	39.986	39.987	39,993	39.986	39.997	39.992	39.9
13	main spigot dia H	126.270	176,285	126.300	126:248	126.312	0.312	0.468	126.280	0.011	120 255	126.299	126 264	126.365	126.792	126.283	126.265	126.272	126.299	136.267	126,288	126,282	126.289	126.289	126.294	126.279	126.279	126.273	126.281	126 277	125 288	126.281	120.283	126.281	128.299	126.280	126.262	126.291	126.272	126.3
14	H concito E			0.020		0.044		0.552	0.026	0.006	0.012	0.035	0.012	0.020	0.029	0.031	0.027	0.029	0.035	0.022	0.025	0.032	0.033	0.028	0.027	0.020	0.028	0.018	0.035	0.032	0.033	0.020	0.019	0.018	0.020	0.027	0.030	0.031	0.025	0.02
15	Bearing Bone dia J	32.000	32.008	32.010	31 991	32.020	0.037	6.414	32.001	0.006	31.990	32.013	31.992	31.990	32 003	32.010	32.005	31 998	32.000	31.991	32 002	32.004	32.002	32.004	32.004	32.013	31 899	32,010	31.999	31 894	31 998	31.997	31.994	32,009	32 015	32 005	31,997	32.004	32.001	31.9
16	J canc to E			0.020		0.025		0.714	0.012	0.005	0.005	0.021	0.008	0.007	0.013	0.014	0.013	0.015	0.013	0.006	0.005	0.010	0.020	0.015	0.007	0.011	0.011	0.011	0.005	0.019	0.015	0.007	0.012	0.021	0.011	0.007	0.000	0.003	0.007	0.00
17	Viton seal bore dia	95.000	35,020	35.040	54.982	35.019	0.045	1.089	35.001	0.006	34.991	35.012	34.991	34 993	35.004	95 012	35.006	34.998	35.002	34.992	35.005	35.003	34,995	95.008	34.999	35.010	\$5.000	35.009	95 000	34,996	34,995	34.996	54 998	35.009	35.007	35.005	35.000	35.002	35 000	31.9
18	Viton seal bore conc to J			0.030		0.012		1 925	0.004	0.003	0.001	0.011	0.003	0.007	0.002	0.002	6.007	0.006	0.001	0.005	0.002	0.004	0.004	0.006	0.004	0.011	11.002	0.004	0.004	0.005	0.001	0.005	0.005	0.010	0.007	0 003	0.000	0.003	0.015	0.0
19	Spherical seal bore diameter	52.350	52 370	52 300	52 340	52,401	0.649	0.655	52.370	0.010	52.138	52.387	52.351	52 338	52 373	52 376	52.373	52.372	52.372	52 370	52 387	52 378	52.374	52 376	52.374	52.381	52 374	52 376	52 365	52,366	52 360	52 367	52.374	52,368	52 371	52 375	52.372	52 374	52 378	52.3
20	Spherical seal crinc to J			0.030		0.035		0.750	0.016	0.006	0.006	0.029				0.009	6.012		0.007	0.006	0.010	0.018	0.024	0.020	0.022	0.010	10.009	0.016	0.023	0.019	0.020	0.017	0.014	0.029	0.016	0.009	0.012	0.013	0.017	0.0
21	Shaft hole bore diameter	12 750	12,800	12.850	12.733	12.001	0.738	0 790	12.797	0.021	12.763	12.873	12.766	12.775	12 801	12.813	12.794	12.768	12.871	12.787	12.867	12.794	12.803	12.907	12.813	12.805	12.798	12.785	12 798	12.782	12.790	12.789	12 796	12.793	12.803	12 793	12.784	12 799	12.778	12.7
22	Shait hole conc to J			0.020		0.013		1.278	0.035	0.003	0.001	0.010	0.009	0.007	0.005	0.005	0.007	0.005	0.005	0.008	0.003	0.001	0 010	0.005	0.007	0.004	0.009	0.001	0.004	0.005	0.003	0.003	0 007	0.010	0.009	0.005	0.004	0 000	0.006	0.0
23	Spigot step to face plane G	11.900	12.000	12 100	11.911	12.036	1.182	14907	11 974	0.021	11.921	11.991	11.969	11.970	11 580	11.972	11.974	11.577	11.921	11.927	11.927	11.972	11.984	11.585	11.984	11.979	11.989	11 968	11 991	11.987	11.987	11.909	11.994	11.962	11.979	11.990	11.996	11.507	11.987	11.9
24	Bearing shoulder to G	48.950	49.000	49.050	48.933	49.048	0.701	0.066	48.990	0.019	48.956	49.015	48.971	48 990	48.975	48.978	48.973	48.974	48.958	48.961	48.956	48.895	49.019	49.008	49.005	49.007	49.008	49.004	49.007	49.005	49.002	49.003	49.006	49.000	49.008	49.007	49.004	49.006	49.002	49.0
25	Shaft hole entry face to 0.	50.800	51.000	51,200	50.805	51,211	0.940	0.985	51:008	0.068	50.931	51.177	51.151	50 990	51.177	50.983	50.990	50.991	50.931	50.932	50.934	50,998	50.983	51.000	50.989	51.025	50 982	50.990	51.181	50.987	51.001	51.024	50.998	50.960	50.992	52,990	50.981	51.027	50.994	50.9
26	Cone depth at 94mm diameter	12.524	12.544	12.584	12.489	12.588	0 297	0.405	12,539	0.016	12.504	12.568	12,530	12.534	12.625	12.527	12.528	12.538	12.514	12.505	12.504	12.541	12.562	12,558	12.541	12.554	12.547	12.548	12.542	12.547	12.549	12.546	12.596	12.550	12 546	12.554	12.557	12.558	12 555	12.5
27	Cone angle (24 points)	159 970	160 000	160.030	159.873	160.242	-0.147	0.160	160.057	0.062	159.996	160,179	100.125	160.178	160.177	180.170	160.124	160.068	160.056	160.048	100.081	160.058	180.044	180.025	160.012	160:012	160.029	180.033	160:029	160.005	159.966	159.988	158 988	160.018	100.083	160.064	160.042	168.803	160,017	160.0
28	Main sphere diameter	114 990	115,000	115 020	114 998	116.016	0.438	0.806	114.991	0.008	114.984	115.001	114 000	114.964	114.907	114.994	114.989	114.987	114.994	114.996	114.996	115.000	114.998	114.993	114.994	114.995	114.991	115.000	114 994	114 998	114.999	114 893	114,996	115.001	114.982	114.989	114.993	114.993	114 999	114 5
29	Main sphere concito H			0.000		0.024	1	1.068	0.010	0.006	0.003	0.019	0.005	0.008	0.003	0.004	0.004	0.008	0.007	0.011	0.051	0.011	0.013	0.011	0.004	0.009	0.010	0.005	0.016	0.019	0.019	0.010	0.013	0.013	0.012	0.012	0.015	0.013	0.011	0.00
30	Main aphere centre to G			0.100		0.116		0.576	0.029	0.029	0.001	0.110	0.025	0.059	0.003	0.016	0 010	0.010	0.072	0.110	0.078	0.056	0.029	0.002	0.607	0.021	0.020	0.001	0.032	0.013	0.017	0.003	0.015	0.044	0.000	0.001	0.020	0.011	0.039	0.01
31	Sphere edge chamfer	0.040	0.060	0.000	TONVIOI	#ERV/OF	PONIO	TONIO	#DIVID!	#01V/01	0.000	0.000																												
328	Left top face height to G	73 630	73.650	73 670	73 610	73.663	0.409	0.899	73 641	0.007	73.623	73 653	73.625	73 623	73.642	73 640	73.631	73.633	73.645	73.645	73644	73.640	73.648	73.646	73.653	73.648	73.644	73 638	73 644	73.644	73 647	73.642	73.639	73.648	73 649	73 645	73 633	73 649	73.640	73.6
32b	Flight top face, height to G	73.630	73.650	73.870	73 826	73.661	0.779	1.130	73.644	0.006	73.631	73.653	73.634	73.631	73.648	73.645	73.636	73.641	73.653	73.639	73.848	73,850	73,649	73.648	73.851	73.642	73.639	73,839	73.845	73.640	73.647	73.644	73.648	73.649	73.648	73.843	73.638	73,655	73.640	73.6
33	Left point at 55mm	37.640	37.650	37 680	37.623	37.687	0.405	0.630	37.655	0.011	37.634	37.071	37.634	37.638	37.638	37.655	37.640	37.642	37.661	37.655	37.663	37.654	37.068	37.062	37.065	37.653	37.663	37.050	37.653	37.656	37.659	37.661	37.671	37.657	37.663	37.645	37.648	37.671	37.649	37.6
34	Left face angle	123 470	123.500	123 530	123.453	123.510	0.396	1.054	123.481	0.009	123 466	123.499	123 470	123 473	123.475	t23.483	123.476	123 477	123.488	123 498	123 481	123.467	123.481	123 481	123 493	123 488	123 464	123 485	123.482	123 406	123 499	123.475	123 466	123 472	123.493	123.487	123 481	123.466	123.468	123.4
35	Flight point at 55mm	37.640	37.659	37.680	37.605	37.657	-0.350	0.762	37.631	0.009	37.612	37.845	37.841	37.643	37.637	37.645	37.627	37.644	37.624	37.615	37.631	37.622	37.633	37.628	37.831	37.624	37.612	37.831	37.630	37.636	37.640	37 630	37.626	37.639	37.630	37.635	37.612	37.630	37.610	37.6
36	Right face angle	56.470	56,500	56,530	-56 485	55.539	0.655	1.096	56.512	0.009	-55.490	56.527	56.508	56 510	65 505	56.400	56,507	55.515	55.495	55.624	55.516	55.500	66.512	-56.516	56.522	66.517	56.518	55 515	56.521	56-527	56.521	56 509	56.510	56.510	55.511	55.519	56.512	56.619	55.529	56.5
37	Foot plane height to centre	70.600	70,700	70.800	70.703	70.740	2250	4,375	70.726	0.008	70.714	70.745	70.722	70.718	70.723	70.738	70,727	70.718	70.745	70.730	70.728	70.722	70,718	70.723	70.723	70.735	70.735	70,734	70.728	70.725	70.714	70.720	70.722	70.723	70.753	70.741	70.738	70.728	70.730	70.7
38	Foot plane angle to K	89.970	90.000	90.030	89.999	90.003	12070	12.867	90.000	0.001	89.999	90.002	90.090	90.000	90.001	90.001	89,999	90.001	90,000	90.001	90.000	90.001	89.999	90.000	90.001	89.999	90.002	89.999	99.001	90.000	89.999	90.000	90.001	90.001	89.999	90.000	99.001	90.000	90,000	90.0
39	Plane D perp to E			0.020		0.022		0.845	0.010	0.004	0.001	0.014	_			0.011	0 014		0.012	0.004	0.011	0.004	0.011	0.012	0.013	0.006	0.011	0.010	0.001	0.014	0.014	0.014	0.013	0.009	0.009	0.006	0.008	0.009	0.009	0.0
49	Wave spring face to G	22,850	23.000	23.150	IDIVIOI	10//01	EDWI01	#DIV/01	EDMI01	#DIVIOI	0.000	0.000	_																									22.999	22.995	22.9
41	Top left spigot radius	9.850	9.900	9.960	TERVIO	#ER//01	#DIVIO	10000	#DRVID!	#01//01	0.000	0.000															_					-						10.020	9.966	10.0
42	Top right spigot radius	9.850	9.900	0.960	#DIV/01	#CR//01	RDN/01	ADIV/01	#DIVIO	#DN:01	0.000	0.000											_															9 926	0.029	0.9
43	Top spigot face perp to K			0.040		0.014		2.170	0.005	0.003	0.000	0.011	0.009	0.008	0.007	0.006	0.005	0.007	0.008	0.006	0.002	0.011	0.003	0.002	0.002	0.005	0.005	0.001	0.001	0.004	0.000	500.0	0.009	0.001	0.001	0.002	0.003	0.006	0.000	0.0
44	Cone apex to G	5.118	0.148	5.17B	5.079	5.210	0.402	0.456	6.144	0.022	5 105	5.189	5.105	6.189	6.181	5 184	6.100	6.148	6.121	5.105	5.110	5.143	5.151	5.148	5.138	0.138	5.145	5.141	5.133	5.130	5.122	5.123	5.148	5.148	6.168	6.181	5.163	6.137	5.139	6.14
45	Cone conicity			0.000		0.056		0.000	0.036	0.007	0.019	0.049	0.022	0.019	0.036	0.039	0.043	0.038	0.037	0.034	0.031	0.043	0.040	0.038	0.049	0.041	0.038	0.032	0.033	0.041	0.039	0.042	0.032	0.036	0.029	0.039	0.037	0.037	0.039	0.03

TUV Approvals

➢ First Pump to be certified to new EU legisation

First two sided pump to be certified with Petrol instead of Air

≻Certifications

- Zephyr 2 Pump with 2x (burket control valves, OPW nozzles and PEC hoses)
- Zephyr 2 Pump with 2x (burket control valves, Elaflex nozzles and PEC hoses)

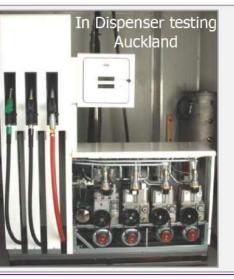
SwashPump (Pre) Production Products

Swash Vapor Recovery System (VRS)

Prototype

Production Unit

Swash Fuel Pump System (FPS) Petrol, Diesel, Bio Fuel

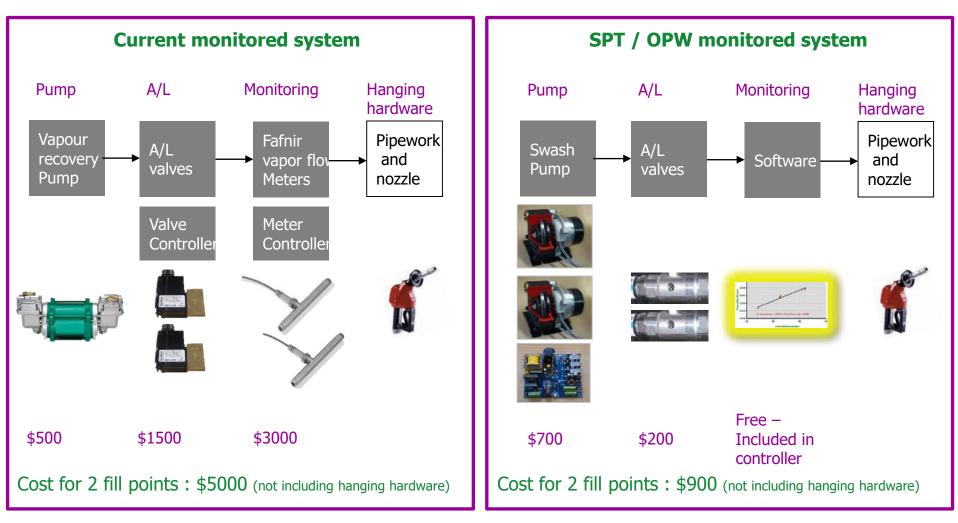

Gas

Prototype

Production Unit

SwashVRS - Petrol Vapour Recovery System

The End TMI - beyond here



Innovative Mechanical Engineering

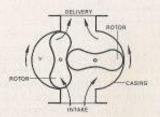
www.DesignSMART.co.nz

Summary

Some countries vapor recovery legislation requires the vapour flow to be measured and compared to the volume of liquid dispensed to calculate the A/L ratio for each fill cycle.

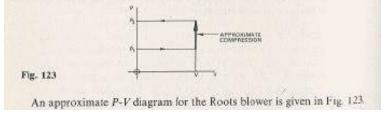
Superior Performance v Roots

Definition	SwashPumpTM
Dry Pump	Yes
RPM	Low i.e. 980 to 1440 for 4 or 6 pole synchronous motor speed
Scaleable	200-50,000 Nl/min 7-1750 ft3/min @ 500mbar
Thermo-dynamic Efficiency	>55% @ 500 mbar Adiabatic Reversible
Exhaust Temperature	< 92 C <194 F
Noise Level	< 85 dB(A)
Vibration	< 5.6 mm/s RMS <.02 ft/s RMS
Service Interval	Trunnion Maintenance approx 2000 hours


Test Rig & Dynamometer

Joel on PV for Roots Blower & Theory

Joel, Roots Blower PV


398 AIR COMPRESSORS

driven together through external gearing. Rotors with more than two lobes are sometimes used when an increase in pressure ratio is required. The rotors rotate in a casing. The operation is as follows. Gas is taken in at the intake and as the rotors are rotated so a mass of gas of volume Vbecomes trapped between the rotor and the casing. This volume V is

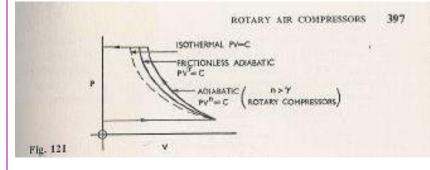
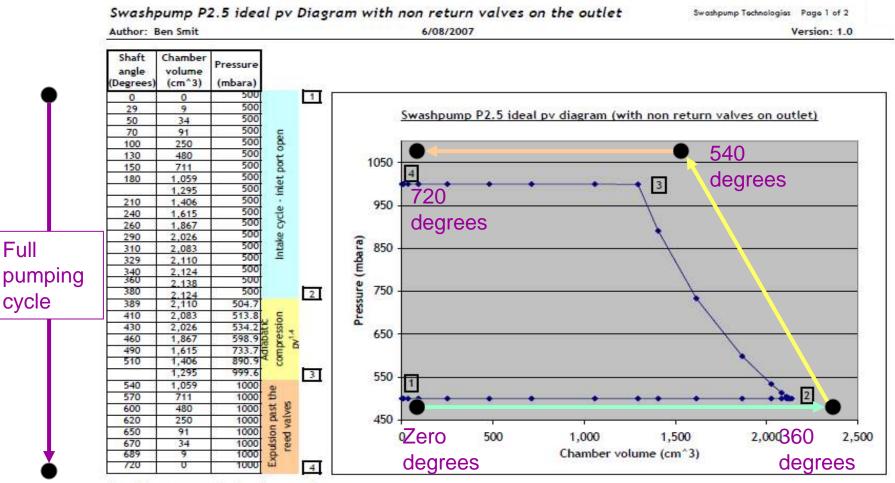
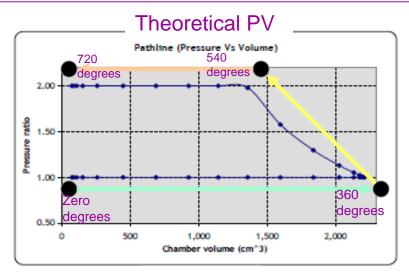
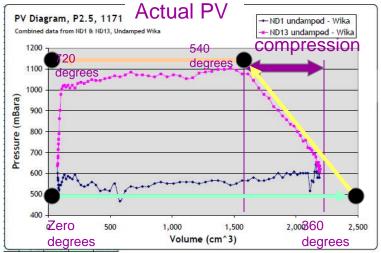


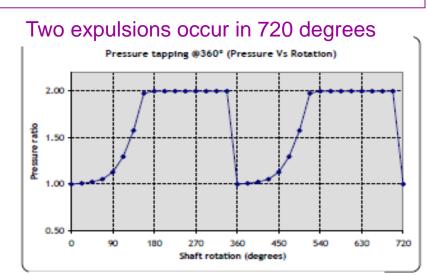
Fig. 122


transported to the delivery side of the machine. As the mass of gas is delivered so compressed gas already on the delivery side compresses the mass to delivery pressure. The volume of gas transported is 4V per revolution. The pressure ratio through the machine is usually low, say 2:1.

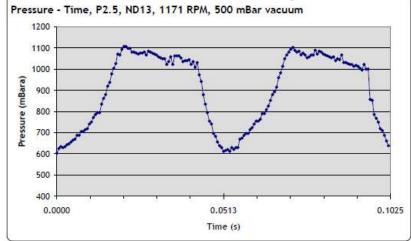
Joel, Theoretical Compression




Ideal SwashPump PV diagram, Closer to the Ideal Isentropic Process



Note: There are two chambers in one swashpump.


Theoretical SwashPump PV diagram vs. Actual SwashPump PV diagram

Actual expulsions in 720 degrees

Materials Considerations

	Comparision of po	ossible	const	tructio	on m	nater	ials					-	2	
Material	Description	Density Kg/m^3	CTE x10E-6 m/m.K	k W/m K	E Gpa	Fy Mpa	Ni %	Cr %	C•	st/Kg \$	Caustic	Castability	Machinability	Heta treatment & Grinding Reqd?
Ni Resist	As previously prototyped	7400	the second s	13	150	205	20%	3%	\$	6.60	В	C	C	No
StStI AISI 420	Martinsitc Stainless steel	7800	10.3		200	345	0%	13%		i.	С	C	С	Yes
StStI AISI 2205	Duplex Stainless steel	7800	13.0	14	200	450	6%	23%			A	D	D	No
High Chromium Iron	Wear resistant grade of cast iron	7700	10.0				1%	12%		1	D	D	С	Yes
Aluminium LM13	Cast aluminium	2700	19.0	167	73	160	2%	N/A	\$	6.00	F	В	A	No
Ni Resist Type D-5		7700	5.0			200	35%	0%	\$	10.00				
Grey cast iron		7300	11.0	52	150	200	0%	1%	\$	2.00			18 78	No
PPS	High Temp Plastic	1.5	20.0		15	120	0%	0%	\$	30.00	В	A	A	No
Titanium-6AL-4Va	High tech!	4500	9.2	6	117	760	0%	0%	\$	71.00	А			No
Density	Density		How hea	avyitis.				-						
CTE	Coefficient of thermal expansion at 20	How mu	ich it exp	ands v	re.									
k	Coefficient of thermal conductivity		How qui		inducts	s heat.							Ĵ.	Ĩ
	Youngs modulas		How rigi										1	ų
Fy	Yield strength		How stro											
% Ni	Percentage of Nickel in the material		Big dete											1
% Cr	Percentage of Chromium in the mate	Big dete	rminant	of corr	osion re	се								
Caustic	Corrosion resistance to caustic clean	ing solutior											1	i.
Castability	Castability		Graded	from A (excelle	nt) to F	(Poor)						1	1
Machinability	Machinability		Graded	from A (excelle	nt) to F	(Poor)							